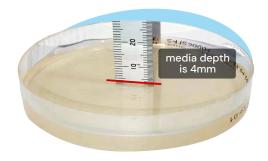


Precision Manufacturing. Uncompromising Quality.

Product Catalog

Company Vision

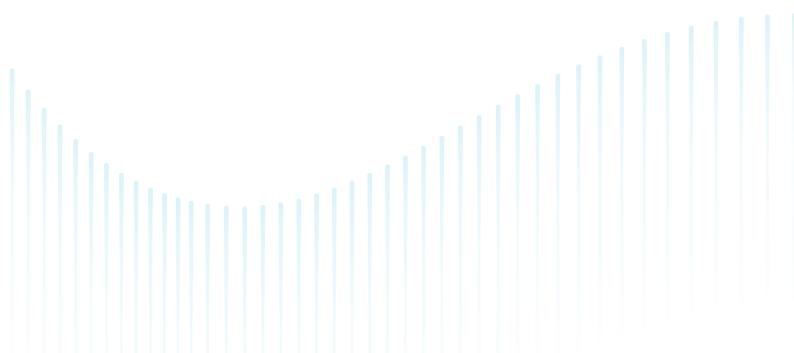
To be the unmatched leader by producing excellent quality and innovative products that helps laboratories to enhance their services.


Company Mission

Raise the quality of healthcare & facilitate medical breakthroughs by bringing innovative medical solutions and people together.

Features and Benefits

- **Premium quality:** Peace of mind knowing your results are trustworthy critical decisions can be made confidently.
- **Direct delivery (manufacturing to the end-user):** Experience unparalleled freshness and eliminate storage concerns media arrives directly from the source.
- Customization: Feel empowered to tailor your workflow for optimal efficiency.
- Variety types of media for clinical & industry microbiology market segment: One-stop shop for all your microbiology needs find the perfect media for any clinical or industrial application.


Media depth significantly influences oxygen availability and nutrient diffusion, impacting microbial growth characteristics. Our stringent controlled manufacturing process ensures that our PPM products consistently meet the specified depth requirements, providing a standardized environment for reliable microbiological analysis.

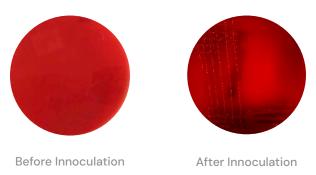


Table of Contents

Anaerobe Media	01
Blood Base Agar	02 - 05
Biplates	06 - 09
Chromogenic	10 - 12
Diagnostics Media	13
Differential Media	14
Drug Susceptibility Testing Agar	15 – 16
General Purpose and Enrichment Media	17 – 18
Fungal Media	19 - 23
Selective and Differential Media	24 - 26

Bacteroides fragilis ATCC® 25285

Schaedler Agar with Vitamin K1 and 5% Sheep Blood

In 1965, researchers developed Schaedler Agar, a medium for growing picky anaerobic bacteria. This original formula aimed to support the growth of various bacteria like lactobacilli, streptococci, and Bacteroides. Later, other scientists modified Schaedler Agar to improve its use. They adjusted ingredients to enhance growth and clarity. Notably, Vitamin K1 was added to support the growth of specific bacteria. Finally, Schaedler Agar with 5% Sheep Blood was created.

Intended use

For the isolation and cultivation of fastidious anaerobic bacteria

Catalog number

FP90S2001

Packing size

Staphylococcus aureus ATCC® 25923

Before Innoculation

After Innoculation

Columbia Agar with 5% Sheep Blood

Columbia Agar Base is a foundational medium for cultivating a wide range of bacteria, including both fastidious and non-fastidious organisms. Introduced in 1966, it provides a rich environment for microbial growth. Modifications can be introduced to enhance its utility. For example, specific additives can be incorporated to selectively inhibit the growth of certain bacterial groups, allowing for the isolation of specific target organisms from complex samples.

Intended use

General-purpose medium for the isolation and cultivation of non fastidious and fastidious microorganisms from a variety of clinical and nonclinical materials

Catalog number

FP90C2001 FP90C2002

Packing size

Haemophilus influenzae ATCC® 10211

Before Innoculation

After Innoculation

Chocolate Agar

Chocolate Agar is a specialized culture medium specifically formulated for the cultivation of fastidious bacteria, particularly *Haemophilus* species. It incorporates GC Agar Base, enriched with heated hemoglobin (releasing hemin), phosphate buffer, corn starch, and KoEnzyme Enrichment.

Intended use

For nonselective medium used for the isolation and identification of fastidious pathogens

Catalog number

FP90C3001 FP90C3002

Packing size

Neiseria gonorrhoeae ATCC® 43069

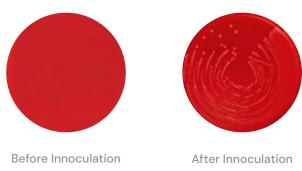
Before Innoculation

After Innoculation

Chocolate Agar with Bacitracin

Chocolate Agar with Bacitracin is a specialized culture medium specifically formulated for the cultivation of fastidious bacteria, particularly *Haemophilus species*. It incorporates GC Agar Base, enriched with heated hemoglobin (releasing hemin), phosphate buffer, corn starch, and KoEnzyme Enrichment. The inclusion of Bacitracin selectively inhibits the growth of competing bacterial flora, thereby facilitating the isolation and recovery of *Haemophilus species*.

Intended use


For the isolation and identification of fastidious bacteria

Catalog number

FP90C3011 FP90C3012

Packing size

Staphylococcus aureus ATCC® 25923

Trypticase™ Soy Agar with 5% Sheep Blood

Trypticase™ Soy Agar is a widely used growth medium derived from a soybean-based formula outlined in the U.S. Pharmacopeia. The inclusion of blood in this medium enhances its ability to support the growth of fastidious bacteria, those with complex nutritional requirements. Furthermore, the presence of blood allows for the observation of hemolysis, the breakdown of red blood cells. This characteristic, particularly the type of hemolysis observed, is an important tool for differentiating various bacterial species, especially those belonging to the *Streptococcus* genus. The absence of carbohydrates in the medium ensures that hemolysis is accurately observed and not masked by other metabolic reactions.

Intended use

General-purpose medium for the isolation and cultivation of non fastidious and fastidious microorganisms from a variety of clinical and nonclinical materials.

Catalog number

FP90T1001 FP90T1002

Packing size

Escherichia coli ATCC® 25922

CLED/MacConkey Agar or CLED/MacConkey III Agar

CLED Agar: In 1960, Sandys reported on the development of a new method of preventing the swarming of Proteus on solid media by restricting the electrolytes in the culture medium. Previous chemical methods used to inhibit swarming by *Proteus* included the addition of chloral hydrate, alcohol, sodium azide, surface-active agents, boric acid, and sulfonamides to the culture medium. This electrolyte-deficient medium of Sandys was modified by Mackey and Sandys for use in urine culture by substituting lactose and sucrose for the mannitol and increasing the concentrations of the bromothymol blue indicator and of the agar. These two investigators further modified the medium by the incorporation of cystine to enhance the growth of cystine-dependent "dwarf colony" coliforms and by deletion of sucrose. They designated the new medium as Cystine-Lactose-Electrolyte-Deficient (CLED) medium and reported it to be ideal for dip-inoculum techniques and for urinary bacteriology in general.

MacConkey Agar: MacConkey Agar is based on the bile salt-neutral red-lactose agar of MacConkey. The original MacConkey medium was used to differentiate strains of *Salmonella typhosa* from members of the coliform group. Formula modifications improved the growth of *Shigella and Salmonella* strains. These modifications included the addition of 0.5% sodium chloride, decreased agar content, and altered bile salts and neutral red concentrations. The formula improvements gave improved differential reactions between these enteric pathogens and the coliform group. MacConkey Agar contains crystal violet and bile salts that inhibit gram-positive organisms and allow gramnegative organisms to grow. Isolated colonies of coliform bacteria are brick red in color and may be surrounded by a zone of precipitated bile. This bile precipitate is due to a local pH drop around the colony due to lactose fermentation. Colonies that do not ferment lactose (such as typhoid, paratyphoid and dysentery bacilli) remain colorless. When lactose nonfermenters grow in proximity to coliform colonies, the surrounding medium appears as cleared areas. MacConkey Agar is listed as one of the recommended media for the isolation of E. coli from nonsterile pharmaceutical products. MacConkey Agar Base is prepared without added carbohydrates, which permits their addition either individually or in combination. It is recommended that carbohydrates such as sucrose or lactose be added in a concentration of 1% to the basal medium.

Intended use

CLED Agar and MacConkey Agar (Biplate) medium are used for urinary microbiology analysis. CLED Agar is a medium for isolating, enumerating, and presumptively identifying microorganisms from urine. MacConkey agar is a selective and differential medium used to detect and isolate gram-negative organisms

Catalog number SP90C1011 SP90C1012 Packing size
10 plates/pack

Escherichia coli ATCC® 25922

Columbia with 5% Sheep Blood/MacConkey Agar or Columbia with 5% Sheep Blood/MacConkey III Agar

Columbia Agar Base is a foundational medium for cultivating a wide range of bacteria, including both fastidious and non-fastidious organisms. Introduced in 1966, it provides a rich environment for microbial growth. Modifications can be introduced to enhance its utility. For example, specific additives can be incorporated to selectively inhibit the growth of certain bacterial groups, allowing for the isolation of specific target organisms from complex samples.

MacConkey Agar & MacConkey III Agar

Lactose fermenters are microorganisms that ferment lactose and those that are unable to ferment lactose are called non-lactose fermenters. *Escherichia coli (E. coli)* are non-spore forming bacteria that are able to grow in aerobic and anaerobic conditions. *Salmonella* is a bacterial pathogen that can be isolated from faeces, blood, bone marrow, bile, urine, food, animal feed and environmental materials. Ingestion of contaminated food and water can cause foodborne infections, including gastroenteritis, typhoid fever, paratyphoid fever or even death in humans. *All Salmonella* serotypes can cause disease in humans. *Acinetobacter baumannii* is a Gram-negative nosocomial pathogen that can persists on dry surfaces longer than any other Gram-negative bacteria. It can persist on moist and dry surfaces for more than 20 days contributes to its widespread in a hospital setting. Acinetobacter spp. are commonly isolated from locations such as hand, groin, toe webs etc. Due to the high antibiotic resistance shown. by this bacterium an early identification is often recommended. *Acinetobacter spp.* have been isolated in connection with community acquired and nosocomial pneumonias, urogenital tract, eye and soft tissue infections and are difficult to treat particularly due to their broad antibiotic resistance.

Intended use

This medium is designed to isolate and differentiate microorganisms in clinical specimens selectively.

Catalog number

SP90C2021 SP90C2022

Packing size

Candida albicans ATCC® 60193

Columbia with 5% Sheep Blood/SDA Agar

Columbia Agar Base is a foundational medium for cultivating a wide range of bacteria, including both fastidious and non-fastidious organisms. Introduced in 1966, it provides a rich environment for microbial growth. Modifications can be introduced to enhance its utility. For example, specific additives can be incorporated to selectively inhibit the growth of certain bacterial groups, allowing for the isolation of specific target organisms from complex samples.

SDA Agar

Infections associated with dermatophytes, other fungi and yeasts, are increasingly becoming a health problem, especially in developed countries. The diffusion of immunodeficiencies-related diseases, together with advanced medical techniques used, including intensive care units, organ transplants and the indiscriminate prescription of antimicrobials have inevitably led to an increased number of immunocompromised patients, and created the ideal conditions for the development of opportunistic fungal infections. Dermatophytes are a group of filamentous fungi able to utilize keratin found in skin, hair or nails which can damage these tissues. The most frequent types of infections are *Tinea capitis, Tinea pedis and Tinea unguium*, involving head, feet and nails of the patient respectively. They are responsible for most of the superficial mycosis known as 'dermatophytosis' and affecting about 20–25% of the worldwide population. Dermatophyte fungi include three genera occupying different ecological niches, but they are all associated to human clinical conditions with Trichophyton rubrum being the most common. Overall, dermatophyte infections are very common and rarely invasive because of the inability of these organisms to infect non-keratinised tissues, such as internal tissues and organs. However, the severity of the condition is always dependent on the host's immune response, the virulence of the species involved and the environmental conditions.

Intended use

This medium is designed to isolate and differentiate microorganisms in clinical specimens selectively.

Catalog number

SP90C1021 SP90C1022

Packing size

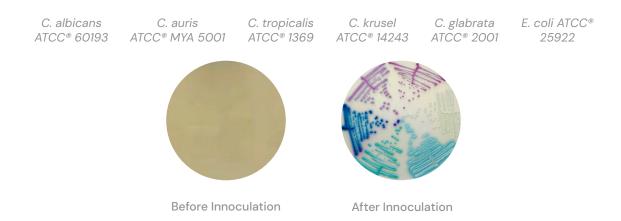
Staphylococcus aureus ATCC 25923

Trypticase™ Soy with 5% Sheep Blood/CLED Agar

Trypticase™ Soy Agar is a widely used growth medium derived from a soybean-based formula outlined in the U.S. Pharmacopeia. The inclusion of blood in this medium enhances its ability to support the growth of fastidious bacteria, those with complex nutritional requirements. Furthermore, the presence of blood allows for the observation of hemolysis, the breakdown of red blood cells. This characteristic, particularly the type of hemolysis observed, is an important tool for differentiating various bacterial species, especially those belonging to the *Streptococcus* genus. The absence of carbohydrates in the medium ensures that hemolysis is accurately observed and not masked by other metabolic reactions.

CLED Agar

In 1960, Sandys reported on the development of a new method of preventing the swarming of Proteus on solid media by restricting the electrolytes in the culture medium. Previous chemical methods used to inhibit swarming by *Proteus* included the addition of chloral hydrate, alcohol, sodium azide, surface-active agents, boric acid, and sulfonamides to the culture medium. This electrolyte-deficient medium of Sandys was modified by Mackey and Sandys for use in urine culture by substituting lactose and sucrose for the mannitol and increasing the concentrations of the bromothymol blue indicator and of the agar. These two investigators further modified the medium by the incorporation of cystine to enhance the growth of cystine-dependent "dwarf colony" coliforms and by deletion of sucrose. They designated the new medium as Cystine-Lactose-Electrolyte-Deficient (CLED) medium and reported it ideal for dip-inoculum techniques andurinary bacteriology in general.


Intended use

1st Agar: For the growth of fastidious organisms and the visualisation of hemolytic reactions 2nd Agar: For the isolation, enumeration and presumptive identification of microorganism from urine

Catalog number

SP90T1021 SP90T1022

Packing size

CHROMagar™ Candida Plus

Candida auris is an emerging fungal pathogen first identified in Japan in 2005. This yeast can cause severe, potentially life-threatening infections, often resistant to multiple antifungal drugs. *C. auris* exists in at least four distinct genetic groups (clades). Strains from some clades are more likely to cause severe infections. Skin colonization is a significant concern in *C. auris* outbreaks, highlighting the importance of thorough patient screening to prevent further spread. Until CHROMagar™ Candida was the primary rapid culture-based method for screening for Candida species.

Intended use

CHROMagar™ Candida Plus is a specialized growth medium that enables the direct detection, differentiation, and presumptive identification of various Candida species, including the concerning pathogen *C. auris*. This medium is used to analyze samples from various body sites and fluids, and it complements standard Sabouraud agar cultures in the diagnosis of Candidiasis.

Catalog number

FP90C5004

Packing size

Escherichia coli ATCC® 25922 Enterobacter aerogenes ATCC® 13048

Before Innoculation

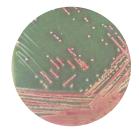
After Innoculation

CHROMagar™ CCA

Water contaminated with microorganisms, particularly bacteria, poses significant health risks. Fecal contamination from human and animal waste can contaminate water sources, leading to serious health issues. While directly testing for all pathogens is challenging, monitoring *E. coli* levels is crucial. *E. coli*, a bacterium found exclusively in the intestines of humans and animals, serves as a reliable indicator of fecal contamination. Therefore, accurate and efficient monitoring of *E. coli* levels in water resources is essential for safeguarding public health.

Intended use

Chromogenic Coliform Agar is a specialized medium used to detect and quantify *E. coli* and other coliform bacteria in water samples with low levels of other bacterial contamination. This method aligns with the ISO 9308-1 standard.


Catalog number

FP60C4004

Packing size

MR S. aureus ATCC® 33592

Before Innoculation

After Innoculation

CHROMagar™ MRSA

Staphylococcus aureus is a significant human pathogen, frequently encountered in various clinical settings. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has significantly complicated treatment due to its resistance to beta-lactam antibiotics. This has led to an increase in healthcare-associated infections. Accurate and rapid screening for MRSA is crucial for effective treatment and infection control. Selective media play a vital role by facilitating the isolation of S. aureus and the simultaneous detection of methicillin resistance.

Intended use

CHROMagar™ MRSA is a specialized growth medium designed to directly detect the presence of methicillin-resistant *Staphylococcus aureus* (MRSA). This medium helps prevent and control MRSA spread in healthcare settings by identifying individuals who are colonized with this bacterium. The test involves analyzing swabs from the nose or perineal area of patients and healthcare workers.

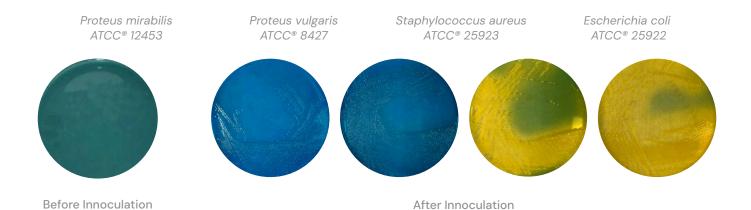
Catalog number

FP690M4004

Packing size

DNase

In 1957, Jeffries and his colleagues developed a specialized medium to detect the presence of an enzyme called deoxyribonuclease (DNase) produced by certain microorganisms. This enzyme breaks down DNA in the medium. When this medium is flooded with hydrochloric acid, a clear zone appears around colonies of bacteria that produce DNase, indicating the breakdown of DNA. DNase Test Agar has proven valuable in the identification of various bacterial species, including staphylococci, enteric gram-negative bacteria (such as those found in the intestines), and pseudomonads


Intended use

Common differential medium used for the detection of deoxyribonuclease DNase activity in bacteria

Catalog number

FP90D1001 FP90D1002

Packing size

CLED Agar

In 1960, Sandys reported on the development of a new method of preventing the swarming of *Proteus* on solid media by restricting the electrolytes in the culture medium. Previous chemical methods used to inhibit swarming by *Proteus* included the addition of chloral hydrate, alcohol, sodium azide, surface-active agents, boric acid, and sulfonamides to the culture medium. This electrolyte-deficient medium of Sandys was modified by Mackey and Sandys for use in urine culture by substituting lactose and sucrose for the mannitol and increasing the concentrations of the bromothymol blue indicator and of the agar. These two investigators further modified the medium by the incorporation of cystine to enhance the growth of cystine-dependent "dwarf colony" coliforms and by deletion of sucrose. They designated the new medium as Cystine-Lactose-Electrolyte-Deficient (CLED) medium and reported it ideal for dip-inoculum techniques and urinary bacteriology in general.

Intended use

For the isolation, enumeration, and presumptive identification of microorganisms from urine

Catalog number

FP90C1001 FP90C1002

Packing size

Mueller Hinton II Agar/Mueller Hinton Agar

Mueller Hinton Agar was originally developed for the cultivation of pathogenic Neisseria. However, these organisms are now commonly isolated on selective media. Because clinical microbiology laboratories in the early 1960s used a wide variety of procedures for determining the susceptibility of bacteria to antibiotic and chemotherapeutic agents, Bauer, Kirby and others developed a standardised procedure in which Mueller Hinton Agar was selected as the test medium. A subsequent international collaborative study confirmed the value of Mueller Hinton Agar for this purpose because of the relatively good reproducibility of the medium, the simplicity of its formula, and the wealth of experimental data accumulated using this medium. The CLSI has written a performance standard for the Bauer-Kirby procedure and this document should be consulted for additional details. The procedure is recommended for testing rapidly growing aerobic or facultatively anaerobic bacterial pathogens, such as staphylococci, members of the Enterobacteriaceae, aerobic gram-negative rods; e.g., Pseudomonas spp. and Acinetobacter spp., enterococci and Vibrio cholerae. The procedure is modified for testing fastidious species; i.e., H. influenzae, N. gonorrhoeae and S. pneumoniae and other streptococci. Mueller Hinton II Agar is manufactured to contain low levels of thymine and thymidine, and controlled levels of calcium and magnesium, Thymine and thymidine levels of raw materials are determined using the disc diffusion procedure with trimethoprim-sulfamethoxazole (SXT) discs and Enterococcus faecalis ATCC 29212. Calcium and magnesium levels are controlled by testing raw materials and supplementing with sources of calcium and/or magnesium as required to produce correct zone diameters with aminoglycoside antibiotics and Pseudomonas aeruginosa ATCC 27853.

Intended use

For the isolation, enumeration, and presumptive identification of microorganisms from urine

Catalog number

FP90M2001 FP90M2002

Packing size

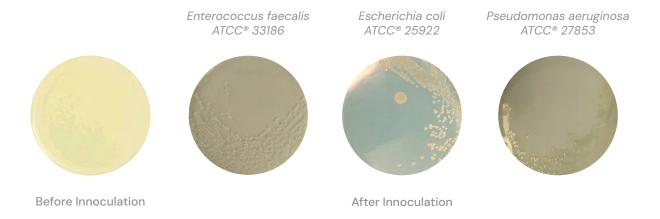
Streptococcus ssp

Before Innoculation

After Innoculation

Mueller Hinton II Agar with 5% Sheep Blood/Mueller Hinton Agar with 5% Sheep Blood

Mueller Hinton II Agar with 5% Sheep Blood/ Mueller Hinton Agar with 5% Sheep Blood is primarily used for antimicrobial susceptibility testing, particularly with disc diffusion or gradient strip methods. While suitable for rapidly growing aerobes, it may require supplementation with 5% sheep blood for more fastidious bacteria like streptococci and *Neisseria meningitidis*. Originally developed for isolating *Neisseria species*, Mueller Hinton II Agar with 5% Sheep Blood/ Mueller Hinton Agar with 5% Sheep Blood is now primarily used for antimicrobial susceptibility testing due to the availability of more specialized media for *Neisseria*.


Intended use

For drug susceptibility testing of fastidious bacteria, including *Streptococcus pneumoniae*, due to its enhanced ability to support their growth and facilitate the interpretation of hemolytic reactions

Catalog number

FP90M2021 FP90M2022

Packing size

Nutrient Agar

Nutrient Agar, a foundational medium in microbiology, was first formulated by the American Public Health Association in 1917. Recognizing the need for a standardized medium for examining various substances, including water, wastewater, food, and dairy products, the APHA established this formulation. Nutrient Agar's significance endures, as it remains a specified medium in contemporary microbiological examination protocols for a wide range of materials. Furthermore, it serves as a valuable resource for the cultivation and maintenance of non-fastidious microorganisms.

Intended use

For general purpose medium used for the cultivation and enumeration of a wide range of bacteria in various samples, including water, sewage, faeces, and other materials

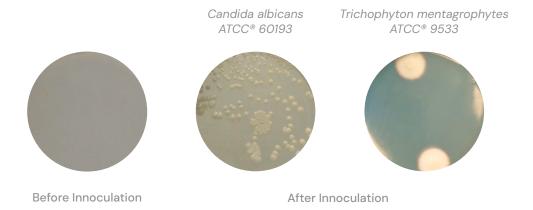
Catalog number

FP90N1001 FP90N1002

Packing size

Trypticase™ Soy Agar

Trypticase™ Soy Agar is a general-purpose medium commonly used in microbiology laboratories to isolate and cultivate a wide range of microorganisms, including fastidious and non-fastidious bacteria, yeasts, and molds. It provides a rich nutrient supporting the growth of various microorganisms. Trypticase™ Soy Agar is also a versatile medium that can be used for various purposes, including maintenance of stock cultures, plate counting, and as a base for other specialized media by incorporating blood or other supplements. The formulation of the Trypticase™ Soy Agar medium contains a combination of casein and soy peptones supplying organic nitrogen, particularly amino acids, and longer chained peptides. Sodium chloride maintains the osmotic equilibrium, and the natural sugars from soy peptone are the energy sources.


Intended use

General-purpose medium which supports the isolation and cultivation of non-fastidious as well as fastidious microorganisms.

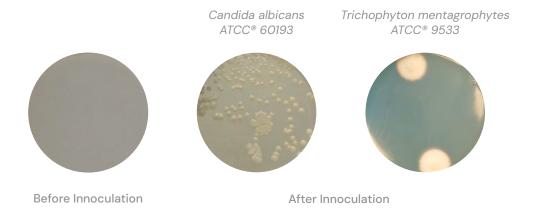
Catalog number

FP90T1011 FP90T1012

Packing size

Sabouraud Dextrose Agar

Infections associated with dermatophytes, other fungi and yeasts, are increasingly becoming a health problem, especially in developed countries. The diffusion of immunodeficiencies-related diseases, together with advanced medical techniques used, including intensive care units, organ transplants and the indiscriminate prescription of antimicrobials have inevitably led to an increased number of immunocompromised patients, and created the ideal conditions for the development of opportunistic fungal infections. Dermatophytes are a group of filamentous fungi able to utilize keratin found in skin, hair or nails which can damage these tissues. The most frequent types of infections are *Tinea capitis, Tinea pedis and Tinea unguium*, involving head, feet and nails of the patient respectively. They are responsible for most of the superficial mycosis known as 'dermatophytosis' and affecting about 20–25% of the worldwide population. Dermatophyte fungi include three genera occupying different ecological niches, but they are all associated to human clinical conditions with Trichophyton rubrum being the most common. Overall, dermatophyte infections are very common and rarely invasive because of the inability of these organisms to infect non-keratinised tissues, such as internal tissues and organs. However, the severity of the condition is always dependent on the host's immune response, the virulence of the species involved and the environmental conditions.


Intended use

For cultivation of pathogenic and nonpathogenic fungi, particularly yeasts and molds.

Catalog number

FP90S1001 FP90S1002

Packing size

Sabouraud Dextrose Agar with Chloramphenicol

Infections associated with dermatophytes, other fungi and yeasts, are increasingly becoming a health problem, especially in developed countries. The diffusion of immunodeficiencies-related diseases, together with advanced medical techniques used, including intensive care units, organ transplants and the indiscriminate prescription of antimicrobials have inevitably led to an increased number of immunocompromised patients, and created the ideal conditions for the development of opportunistic fungal infections. Dermatophytes are a group of filamentous fungi able to utilize keratin found in skin, hair or nails which can damage these tissues. The most frequent types of infections are Tinea capitis, Tinea pedis and Tinea unguium, involving head, feet and nails of the patient respectively. They are responsible for most of the superficial mycosis known as 'dermatophytosis' and affecting about 20-25% of the worldwide population. Dermatophyte fungi include three general occupying different ecological niches, but they are all associated to human clinical conditions with Trichophyton rubrum being the most common. Overall, dermatophyte infections are very common and rarely invasive because of the inability of these organisms to infect non-keratinised tissues, such as internal tissues and organs. However, the severity of the condition is always dependent on the host's immune response, the virulence of the species involved and the environmental conditions. Chloramphenicol acts as a broad spectrum antimicrobic which inhibits a wide range of gram-positive and gram-negative bacteria.

Intended use

For the isolation and cultivation of fungi, particularly yeasts and molds.

Catalog number

FP90S1011 FP90S1012

Packing size

Candida albicans ATCC® 60193

Before Innoculation

After Innoculation

Sabouraud Dextrose Agar with Chloramphenicol and Gentamicin

Infections associated with dermatophytes, other fungi and yeasts, are increasingly becoming a health problem, especially in developed countries. The diffusion of immunodeficiencies-related diseases, together with advanced medical techniques used, including intensive care units, organ transplants and the indiscriminate prescription of antimicrobials have inevitably led to an increased number of immunocompromised patients, and created the ideal conditions for the development of opportunistic fungal infections. Dermatophytes are a group of filamentous fungi able to utilize keratin found in skin, hair or nails which can damage these tissues. The most frequent types of infections are Tinea capitis, Tinea pedis and Tinea unguium, involving head, feet and nails of the patient respectively. They are responsible for most of the superficial mycosis known as 'dermatophytosis' and affecting about 20-25% of the worldwide population. Dermatophyte fungi include three general occupying different ecological niches, but they are all associated to human clinical conditions with Trichophyton rubrum being the most common. Overall, dermatophyte infections are very common and rarely invasive because of the inability of these organisms to infect non-keratinised tissues, such as internal tissues and organs. However, the severity of the condition is always dependent on the host's immune response, the virulence of the species involved and the environmental conditions. Chloramphenicol and Gentamicin acts as a broad spectrum antimicrobic which inhibits a wide range of gram-positive and gram-negative bacteria.

Intended use

For the isolation and cultivation of fungi, particularly yeasts and molds.

Catalog number

FP90S1021 FP90S1022

Packing size

Candida albicans ATCC® 60193

Potato Dextrose Agar

Fungal infections are becoming more common and more dangerous. They often spread throughout the body or occur alongside other serious illnesses like AIDS or cancer, especially in people with weakened immune systems. Candidiasis is now a major problem for people with these conditions. Unfortunately, we have few effective antifungal drugs, and fungi quickly become resistant. As a result, fungal infections are now more deadly than bacterial infections. Potato dextrose agar (PDA) is the most widely used medium in fungal isolation and culture.

Intended use

For the cultivation and enumeration of yeasts and moulds.

Catalog number

FP90P1001 FP901002

Packing size

Candida albicans ATCC® 10231

Before Innoculation

After Innoculation

Mycosel Agar

Mycosel Agar is a specialized culture medium formulated to selectively isolate and cultivate dermatophytes. It is derived from Mycophil Agar, a nutrient-rich base, with the addition of cycloheximide and chloramphenical to inhibit the growth of competing microorganisms, such as bacteria and saprophytic fungi. This selective action enhances the isolation and recovery of dermatophytes from various clinical specimens, making Mycosel Agar an essential tool in the mycological laboratory for the diagnosis of fungal infections.

Intended use

For the isolation and cultivation of dermatophytes

Catalog number

FP90M3001

Packing size

MacConkey Agar & MacConkey III Agar

Lactose fermenters are microorganisms that ferment lactose and those that are unable to ferment lactose are called non-lactose fermenters. *Escherichia coli (E. coli)* are non-spore forming bacteria that are able to grow in aerobic and anaerobic conditions. Salmonella is a bacterial pathogen that can be isolated from faeces, blood, bone marrow, bile, urine, food, animal feed and environmental materials. Ingestion of contaminated food and water can cause foodborne infections, including gastroenteritis, typhoid fever, paratyphoid fever or even death in humans. *All Salmonella* serotypes can cause disease in humans. *Acinetobacter baumannii* is a Gram-negative nosocomial pathogen that can persists on dry surfaces longer than any other Gram-negative bacteria. It can persist on moist and dry surfaces for more than 20 days contributes to its widespread in a hospital setting. *Acinetobacter spp.* are commonly isolated from locations such as hand, groin, toe webs etc. Due to the high antibiotic resistance shown, by this bacterium an early identification is often recommended. *Acinetobacter spp.* have been isolated in connection with community acquired and nosocomial pneumonias, urogenital tract, eye and soft tissue infections and are difficult to treat particularly due to their broad antibiotic resistance.

Intended use

Selective and differential plating media are mainly used to detect and isolate gram-negative organisms from clinical, dairy, food, water, pharmaceutical, cosmetic, and other industrial sources

Catalog number

FP90M1001 FP90M1002

Packing size

10 plates/pack

Escherichia coli

ATCC® 25922

XLD Agar

Xylose lysine deoxycholate (XLD) agar detects gastrointestinal pathogens, including *Salmonella spp*. and *Shigella spp*. by inhibiting gram-positive bacteria, allowing gram-negative bacteria to grow. Xylose is fermented by most enteric bacteria, producing acid that turns the medium yellow. Bacteria that decarboxylate lysine create an alkaline environment, resulting in red colonies. *Salmonella spp*. produces hydrogen sulfide (H2S), forming black colonies when it reacts with iron salts in the medium. XLD agar is used mainly to isolate *Salmonella spp*. and *Shigella spp*. from clinical and environmental samples, including stool. Yellow colonies indicate xylose fermentation (e.g., *E. coli*), red colonies show lysine decarboxylation without xylose fermentation, and black colonies suggest H2S production, typical of *Salmonella* spp. Further microbiological identification tests are necessary to confirm and diagnose the presence of microorganisms.

Intended use

For moderately selective and differential solid medium for the isolation of gram-negative enteric pathogens

Catalog number

FP90X1001 FP90X1002

Packing size

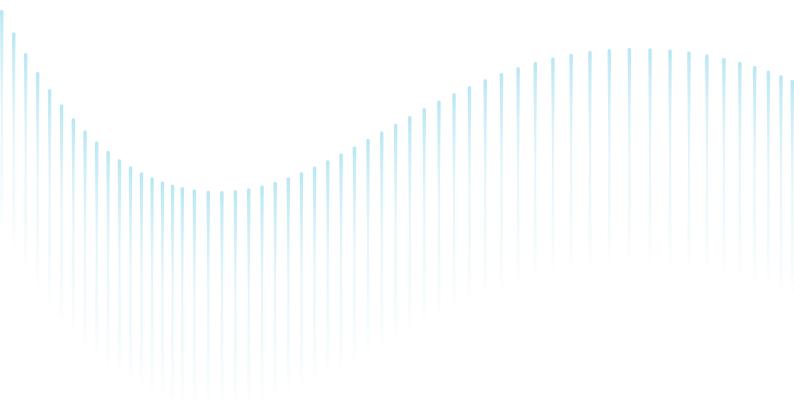
TCBS Agar

TCBS (Thiosulfate–Citrate–Bile Salts–Sucrose) agar is a selective and differential medium specifically designed for the isolation and identification of *Vibrio* species, particularly *Vibrio* cholerae and *Vibrio* parahemolyticus. These bacteria are significant human pathogens, with epidemiological data indicating that vibriosis, the illness caused by *Vibrio* infections, results in an estimated 80,000 illnesses, 500 hospitalizations, and 100 deaths annually within the United States. The clinical manifestations of vibriosis are diverse and can range from mild gastrointestinal symptoms, such as diarrhea, to more severe systemic infections. These infections can include bacteremia (bloodstream infections), wound infections, and extraintestinal infections that affect other parts of the body.

Intended use

For the selective isolation of pathogenic Vibrio from clinical and nonclinical specimens

Catalog number


FP90T2001 FP90T2002

Packing size

Redefining Precision Manufacturing. Elevating Quality.

Bridging innovation with healthcare solutions for a healthier future.

